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The equilibrium and stability of a power discharge in a dense optically
transparent plasma is examined. It is shown that, contrary to the case
of an optically nontransparent plasma, the temperature of a transparent
discharge varies along the same characteristic scales as the other hydro-
dynamic quantities. Analysis of small oscillation spectra showed that
such a discharge is unstable even within the framework of the geomet-
rical optics approximation. The major portion of this paper is devoted
to a study of the stability of a discharge with allowance only for brems=~
strahlung; however, the conditions for the onset of instability are de-
rived also for other types of radiation. Under the conditions studied,
the general cause for the development of instabilities in a discharge

in a transparent plasma is superheating that results from the inability
of the weak emitted heat flux to compensate for the Joule heating of
the plasma.

The utilization of optically nontransparent power discharges in dense
plasmas as light sources for pumping lasers was discussed in [1]. In
particular, the study made it possible to determine the discharge pa-
rameters for which a discharge stability sufficiently long for this purpose
can be obtained for a required radiation intensity from the surface, In
the present paper a theory is developed for an optically transparent
plasma, in the case in which most of the radiation is transported by
quanta with a mean free path exceeding the characteristic dimensions
of the system.

The study of the equilibrium and stability of a transparent discharge is
not solely of interest as such. It contributes to a better understanding of
processes occurring at the boundary of a nontransparent discharge.
Owing to the drop in particle density near the boundary of the nontrans-
parent discharge, a transparent plasma layer is created for which the
radiant (heat) transport approximation employedin [1] is no longer valid.
The structure and stability of such a boundary can be analyzed on the
basis of the results of this paper.

1, Formulation of the problem and the basic equa-
tlons. Let us assume that the radiation flux from the
discharge is sufficiently large to influence the latter both
in the state of equilibrium and in the presence of oscilla-
tions. The corresponding conditions are given below.
‘The complete system of magnetohydrodynamic equa-
tions for a plasma with allowance for radiation is writ-
ten in the form {2, 3]
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—crotE =% = rot [vB] — %rot (—;— rotB)‘,
p [Sr+ (D) v] =—Vptmav+
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P=P(Pr T)v S=S(p, T)' (1'1)

Here, £ and 1 are viscosity coefficients, U'ij is the
viscous-stress tensor, y is the thermal conductivity
coefficient, and S is the radiation flux vector.

At a temperature T ~ 3 to 10 eV, the plasma can
be considered as a fully ionized ideal gas, and we use
the following expression for the pressure p and entropy
per unit mass s:

1 T
p=(1+2)Nul = 4T

1
+ ( +A;)CV InxT + const.  (1.2)
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S= — lj-/ Inp

Here, M is the ion mass, and z the effective ion
charge. Under these conditions, the plasma conductiv-
ity is o = aZ"'T32, where o = 410",

The system of equations (1.1) was written without
considering the radiation energy (as compared to the
thermal-particle energy). This is justified if

6°T* )

8 —— < p= NuT, (1.3)
where 6 is a small quantity comparable in order to the
ratio of the characteristic dimension of the plasma
charge to the quantum mean free path, and o’ = 5.67"
+107° erg- cm™- degree *-sec™ is the Stefan-Boltz-
man constant. Furthermore, in the following, the
electron thermal conductivity is everywhere postu-
lated small in comparison to the energy transfer by
radiation, i.e.,

divgaT < div S. (1.4)

In the following, these inequalities will be analyzed
for the equilibrium obtained. At this point, we merely
note that they are easy to fulfill, and that for tempera-
tures T > 10* ° K, which are of interest when we
use condition (1.4), inequality (1.3) is automatically
satisfied at the same time. Finally, in the analysis of
system (1.1), all effects associated with the viscous
terms are neglected. For the equilibrium with vy = 0,
examined below, this leads to a single requirement,
namely that the oscillation frequencies must satisfy the
inequalities

w>ipi, *'T"’ (1.5)

For an optically transparent plasma, we derive now
an expression for the energy loss by radiation per unit
volume, gqg. Considering the fact that for the over-
whelming majority of directions of quantum propaga-
tion in a transparent medium, the radiation intensity is
much smaller than the equilibrium intensity, we get

o0

g, = div S = Sodv Sdqu'(Iv, — 1) :x(S dv S Q'L ,

I,="_ (exp ﬁ,‘i—l)—l s A = n,,<1— exp—MThv>. (1.8)
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Here, Ipp is the equilibrium radiationintensity, and
nyp' is the absorption coefficient with allowance for
"re-emission."

The approximation made in (1.6) means that in the
expansion of ¢g in powers of 6 ~ ry/l;, only the zero-
order term is retained. By evaluating integral (1.6) for
the case of electron bremsstrahlung in an ion field,
when

Hy = 4.,1+40728 23 N2 T~ (;th%)_sa
we get
ds = To VTN2ZS (Yo=1.4-10"27) . (1.7)

In the general case [2], it is convenient to write qg
in terms of the quantum mean free path in the medium
o
-1

__ bo°Te , Lo, T)= S[‘,pd (S %' Lyp dV) © (1.8)
H

8" ll

2. Equilibrium state of the charge, Before analyzing
the stability of the discharge, let us examine the equi-
librium problem. The energy balance in the discharge
is ensured by Joule heating, on the one hand, and by
volume radiation, on the other hand. From system
(1.1) it can be readily seen that in the steady equilib-
rium state the field E; is uniform across the plasma
(for vy = 0). The pressure, density, plasma tempera-
ture, current, and the magnetic field are functions of
the coordinates. The spatial distribution of these quan-
tities is defined by the equations* (the subscript zero
refers to equilibrium values)

rot B, = i’fJo = ﬂ GoEg = fiﬁ.TO‘/on ,
1
VP0=ZE[r°tBoBo]1 Po= ——F— RCsk LI +Z)u 0T,
°0E02'= To ‘V’T‘(‘)No‘zza, Go = GZ-ITO " . (2.1)

From the equation of state and the energy balance
equation, it follows that

Po = (W)lﬁ TO’/R = BOTO'/‘- (2.2)

Toz*

This result is independent of the discharge geom-
etry. As in [1], the following analysis is performed
for two types of discharge: a plane (surface) discharge,
and a simple cylindrical discharge (z-pinch). Let us
examine the plane discharge first. Eliminating B, and
T, from the equilibrium equations (2.1), we get an
equation for py,

3 a —_——
_;PIO + V-zl—zgo VPO(O)_pO =0 <le = 41‘::;E0) . (2.3)

Here, p;(0) is the pressure at the discharge axis.
From Egs. (2.3), (2.2), and (2.1), we get the equilib-
rium values of py, T,, and B for the two-dimensional
case,

il ”s
PO(O)W» =Ty (0)(p0(0)> ,
¥ 8xp, (0) ) = (’r ~ Vi ) (2.4)

where v is the characteristic dimension of a plane
transparent discharge.
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It is now easy to determine the radiation energy
loss by a substance situatedin a plane discharge, as re-
ferred to the unit area of the discharge, Q:

oo
4yoBo®z®

—— —_ e __CEB (o0)
Q= S Qsdﬂ’—-mﬂ (O)—’OT;"

(2.5)

Although in the region |x| > 1/, the relations ob-
tained do not hold because of the abrupt temperature
drop and the formation of neutral particles, integra-
tion in formula (2.5) is extended to infinity, since the
plasma density in this portion of the discharge also
drops abruptly and the number of neutral particles is
negligible in comparison to the total number of charged
particles in the discharge. Finally, for the current,
we have

fo= § jods— (220" (2.6)

Let us now examine the equilibrium state in the cy-
lindrical case. By eliminating py and T from system
(2.1) and introducing the variable y = —1 + a;B¢r/4m8,,
we get the equation

’ 1 !
(ry-—y—}—Tyz) =0. 2.7

Solving this equation with the boundary condition y =
= —1 and r = 0 for hydrodynamic equilibrium values,
we get the following expression

_n® s
bo= AT rerdi = T4(0) (p 0) )

r/r,
P SﬂPO( )1+r2;r2 ’ (2.8)
where 1y = 4y~! is the characteristic dimension of a
transparent cylindrical discharge. The energy removed
by radiation from a discharge of unit length is
oo
167?28, ¥,
0 =S2nrqs(r)dr=(1—_’_1;'§37";;?To/(0). (2.9)

[

The total current in the cylindrical case is

26 (1 + 2)
TR (2.10)

It can be seen that for a transparent cylindrical dis-
charge with bremsstrahlung, for a given ionization
level, the total current is a dc current that is indepen-
dent of Ny, T;, and E;. A similar result has been ob-
tained in [4] for a discharge in a high-temperature
thermonuclear plasma.

On the basis of the equilibrium solutions obtained,
it is easy to evaluate the plasma parameters for which
the inequalities (1.3), (1.4) as well as the transparency
condition {; > 1/y are fulfilled. It is found that the elec-
tron thermal conductivity at the discharge is so

Iy= ~1t%0.3.10%.

*The effective ion charge z is a function of the tem-
perature. In the temperature range examined, when no
neutral particles are contained in the plasma, this re-
lationghip is weak (z ~ TB, where B < 0.5; with respect
to magnitude, z ~ 2). This relationship will be ne-
glected in the following. ‘



small that it can be safely neglected everywhere. The
corresponding condition has the form

To™ (0) < 10%E,, (2.11)

~while the transparency condition for the discharge can
be written as

To"(0) = 5-101F, . (2.12)

Finally, inequality (1.3) is fulfilled (assuming 6 ~ 1),
if

Ty < 1018E, . (2.13)

As previously noted, at temperatures T, > 10* ° K,
inequality (2.11) is of a higher power than (2.13). On
the other hand, inasmuch as only such temperatures
are of interest, only inequalities (2.11) and (2.10) need
be satisfied. For Ej~ 0.1 ~1 CGSE they can be readily
satisfied in the range 2 - 104 < Ty < 5-10°° K.

It is noteworthy that, whereas inequality (1.4), in
virtue of it being fulfilled at the discharge axis, is ful-
filled everywhere, the inequality 6 < 1 (and, conse-
quently, also (1.3)) no longer holds for |x| > 1/y. This
is associated with an abrupt drop in discharge temper-
ature at these distances, owing to which the assump-
tion that the dense plasma is fully ionized is no longer
justified.

3. Stability of the discharge. We examine now the
stability of the discharge with respect to the small
perturbations

p >po +p1, I =Ty + 7Ty,
p—>py +pi» BBy +B;, v

The perturbations are assumed to depend on time
and on the coordinates as follows:

h =11 (@) exp (— it + iky + ik,z),
fo = F (1) exp (— iof + img + ik,z),

for a plane and a cylindrical discharge, respectively.
A linearized system of equations, analogous to (1.1),
was obtained in [1] and, hence, we do not repeat it
here. It is enough to keep in mind that for a transpar-
ent plasma, the divergence of the perturbed radiation-
flux vector, when bremsstrahlung alone is taken into
account, is equal to

. T
T dlvslzgso(ﬁ—{-Z%). (3.1)
In the general case, we have
bqs g,
ga = 6p2 oL 1 3 0 Tl (3.2)

As distinct from an optically dense discharge, in-
stability of a transparent discharge occurs, as will be
shown below, even in the geometrical optics approxi-
mation; in this case, the dispersion equations for plane
and cylindrical discharges differ only by the trivial
replacement ky — m/r and, therefore, the analysis is
limited to the plane discharge. Let us examine first
the simple case in which ky = k, = 0 and radiation is
pure bremssirahlung. In this case, the system of lin-
earized equations reduces to two equations for the
quantities p; and v = p; + (ByBy/4m),
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X
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* Py 86,0 (&x)) =0,

_ ({4 2) T _ _5 3
vso__1/ i ., I)AA ———W)‘O . (3- )

Here, vg, is the speed of isothermic sound in the
plasma, and v the Alfvén velocity. We analyze sys-
tem {3.3) in the geometrical optics approximation, i.e.,
for oscillations at a wavelenght smaller than the char-
acteristic dimension of the plasma discontinuity

1 1
ke -~ >t (3.4)
Here Ay ~ kg ™! is the wavelength of the oscillations
in the direction of a discontinuity. System (3.3) leads
to the following eikonal equation [5]:
o <(1)2 + iwck? _ ksz2 )_,

4116

242 g2 2 )
— K2 ( 2+'2’;60>+ ORI (02— kw2 =0. (3.5)

66y po

This equation can be readily solved with respect to

win the twolimiting cases w >» kvg and w « kvg, where

it reduces to quadratic equations. The solution, then,
can be written from a unified point of view

N . otk 2k \Vs
P12 T B —z?(“ 16:#502*‘@) , (3.6)

where

1 o>k, 2 5 2
5 8

»E= s o <kvy'

; {l+vA'-’/vs2
a 1

It is noteworthy that in virtue of the condition for
the applicability of the geometrical optics approxima-
tion (3.4), the first term under the radical sign in ex-
pression (3.6) is k/y times greater than the second
term. Therefore, the large root in (3.6),

. ci2
Oy = — | ———
2 4migl® °

corresponds to the damped oscillations, and describes
the penetration of the magnetic field into the plasma.
It is this root that determines the transient period of
the equilibrium state in the discharge (the time re-
quired for the electric field of the discharge to equal-
ize across the plasma) 7~ 1/w,. The small root, on
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the other hand, corresponds to aperiodic unsteady os-
cillations with a damping constant

2702 2

Imo, ~ —.
Colo O

(3.7)

The form of the damping constant clearly indicates
that instability is associated with a finite conductivity
of the plasma and is caused by ohmic heating. Instabil-
ity is due to superheating, and is attributable to the
fact that in an optically transparent plasma, the radia-
tion emitted from the plasma is not capable of com-
pensating for the increasing temperature fluctuations
caused by Joule heating.

The high-frequency instability in the region w > kvg
is not associated with the hydrodynamic motion of the
plasma, and is caused solely by an increase in plasma
temperature. Such an instability can occur only in a
poorly conducting plasma with a sufficiently low tem-
perature, where yc? > 4woyvg. With increasing plasma
temperature, this inequality no longer holds, and the
oscillations will stabilize; the instability liquidates it-
self. A high-frequency instability, induced by super-
heating, is therefore not dangerous. A low-frequency
instability in the range w < kvgis more dangerous, since
its development is accompanied by hydrodynamic mo-
tion of the plagma. Furthermore, such aninstability
can occur both in a poorly conducting low-temperature
plasma and in a highly conduciing high-temperature
plasmax

The danger of a low-frequency instability is enhanced by the cir-
cumstance that it can occur also at k, # 0. Indeed, for k; =0, the
dispersion equation of the oscillations in the geometrical optics ap-
proximation takes the form

o? (mz + i%"ﬁz‘i — kz,,Az) — k%2 (mz + ‘_Z}%’f) +
0

+ 2k ¥o? [(1 _> Q) @ — 3k2032] =0 (k=k+ k2. (3.8)

671602 po Tk

In the range of low frequencies w < kvg the instability under study
is conserved, although the increment of its development decreases by
a value of kg(/kz. However, in the range w >kvg, at kz = 0, the os-
cillatjons stabilize, provided 2kzz > K.

In view of the complexity of the system (1.1), a stability analysis
for the case ky = 0 was not performed. The authorsare of the opinion,
however, that allowance for other than zero values of ky should not
lead to a stabilization of low-frequency oscillations with w > kvg, as
is the case for an instability induced by superheating in a high-temper-
ature plasma [6].

Let us now examine briefly the case of a radiation of general type
in a transparent body, where expression (3.2) holds for qgy. The dis-
persion equation for oscillations with Ky =kz = 0, in the geometrical
optics approximation, has the form

ot (of LI a2\ gy gr . 0CR?
( +——4mo YA Ve" | @ +-—-—4m0 v+

b (308 g, )

616000\ 2 oo 3T,
2kt 3 /ot 0q4, 9g
—_ [ — Ty —=21=0. 3.9
650p0 (2 Go + °ap0 0 6T0> 39

From this equation, together with the known relationship qso(pgsTo)»
it is possible to determine the instability boundary and the increment
of instability development. It can be seen that radiation, generally
speaking, can have both a stabilizing and a destabilizing effect on a
plasma instability produced by superheating. Thus, in the high fre-
quency range w > kvs, where the plasma density may be considered
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constant throughout the oscillation process, radiation has a stabilizing
effect, under the condition that

9q
T (__’_0> >0
o 6T0 Po
If, in addition, the inequality

o 3
Ty | 20 2
° (aTo)a.\> Pl ']

is fulfilled, radiation will fully stabilize this type of plasma instability.

In the opposite range, the plasma pressure remains constant during
the oscillation process. Here, radiation has a stabilizing effect if

9q oq 9q
T __0) =7y 20 _p, Y,
0 (6T0 ” ()] 3T Po 7 >

The instability induced by superheating is fully stabilized under the

following condition:

dqsu) §
To(m po>211.so-

It should be noted that Eq. (3.9) is particularly useful in the anal-
ysis of oscillations in a discharge at distances of |x| > 1/y from the
discharge axis, since, in this range, there appears a marked line spec-
trum which is caused by the formation of neutral atoms in the plasma
radiation, and the condition of considering bremsstrahlung alone no
longer holds.

4, Discussion of the results, and conclusions, When summing up
the analysis of the equilibrium and stability of a power discharge in an
optically transparent plasma, the instability of the discharge deserves
to be mentioned first. As has been shown, the cause for this instability
is the smallness of the energy flux removed by radiation as compared
to ohmic heating. As distinct from an optically dense plasma, the
temperature fluctuations in a transparent plasma cannot be fully dis-
sipated by radiation, as a result of which they buildup atanincrement
of Imw = 1/ gyp,. By making use of the equilibrium obtained, the
increment can be written in the form Imw =~ 4 105E0. From here it
follows that for Ey ~ 0.1-1 CGSE, instability develops during the time
T~ 10~® sec. This time is comparable with the hydrodynamic time
o/vg, and is smaller than the time normally required for sustaining a
discharge when using it as a light source for pumping lasers. Therefore,
it is inadvisable to use a completely transparent discharge as a light
source.

In the case of a discharge in an optically dense plasma, the insta-
bility under consideration can develop also, but only in a narrow trans-
parent layer about the nontransparent plasma which is responsible for
the principal portion of the radiation. By adding the time required for
instability to develop to the time required for the disturbances to travel
from the transparent to the nontransparent layer, one arrives at the
conclusion that development of instability at the periphery of the dis-
charge when rp > 1 is unlikely to have any greater influence on the
central nontransparent portion of the discharge.

The problem of the state which the plasma assumes as a result of
the development of instabilities produced by superheating is of essential
interest. A strict answer cannot be obtained in linear approximation,
so that analysis of the nonlinear problem becomes necessary. In spite
of that, simply judging from the maximum intrement of instability
development, itappears that instability should manifest itself by the
formation of filaments or layers, characterized by a higher or a lower
plasma conductivity, which extend in the direction of the total current
in the discharge.

In conclusion, it should be noted that instability of a completely
transparent discharge makes it less promising for laser pumping purposes.
On the other hand, a totally nontransparent discharge (blackbody) may
prove to be unprofitable in terms of energy, due to the substantial
radiation energy losses in the far ultraviolet at photon energies of hv =
= 3T, Of particular interest in this connection is the intermediate-

*The instability examined is analogous in nature to
an instability induced by superheating in a high-tem-
perature plasma in a strong longitudinal magnetic field
which freezes the thermal conductivity of the plasma
across the field [6].



type "semitransparent” discharge, where, in principle, it is possible to
favorably combine stability with an adequately high efficiency.
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